Synthesis of Dialkyl 2-(Alkylamino)-4,9-dihydro-9-oxocyclohepta[b]pyran-3,4-dicarboxylates

by Javad Azizian*^a), Ali Ramazani*^b), and Mohammad Haji^a)

^a) Chemistry Department, Science and Research Branch, Islamic Azad University, P.O. Box 19395-1775, Tehran, Iran

^b) Chemistry Department, Islamic Azad University, Zanjan Branch, P.O. Box 45195-467, Zanjan, Iran (fax: +982414213955; e-mail: aliramazani@gmail.com)

Dialkyl 2-(alkylamino)-4,9-dihydro-9-oxocyclohepta[b]pyran-3,4-dicarboxylates are prepared in a one-pot three-component reaction of alkyl isocyanide, dialkyl acetylenedicarboxylate, and α -tropolone (=2-hydroxycyclohepta-2,4,6-trienone). The reaction proceeds smoothly at room temperature and under neutral conditions to afford tropolone derivatives in high yield.

Introduction. - Heterocycle-fused tropolones, an important class of compounds with varied pharmacological and biological properties have attracted great attention since the beginning of tropoid chemistry [1-4]. The cyclohepta[b]pyran ring system is the backbone of some natural products such as paulitine (*Fig.*), which displays several biological activities, and some derivatives of this system exhibit platelet anti-aggregating, HIV protease inhibition, anesthetic, histaminic response-reducing, antimalarial, anti-inflammatory, and analgesic activities [5-8]. Only a few methods have been reported for the construction of cyclohepta[b]pyran ring systems. In a first method, a cyclohepta[e][1,3,2]dioxaborin ring is formed by reaction of cycloheptanone with Ac₂O in presence of BF_{3} , and subsequent reaction with *Vilsmeier* reagent provides the cyclohepta[b]pyran system [6]. In a second method, reaction of 3-acetyltropolone with benzaldehydes yields 3-cinnamoyltropolones, which are cyclized to 2-arylcyclohepta[b] pyran-4,9-diones in presence of oxidizing reagents such as SeO₂[9], 2,3-dichloro-5,6-dicyano-1,4-benzoquinone [10], $HClO_4$ [11], Br_2 [12], and $I_2/DMSO/H_2SO_4$ [13]. Also the reaction of chloro(phenyl)ketene with 2-(aminomethylidene)cycloheptanones, followed by dehydrochlorination of the primary adducts, yields 4-amino-6,7,8,9tetrahydro-3-phenylcyclohepta[b]pyran-2(5H)-ones [14].

Figure. Molecular structure of paulitine (see text)

© 2011 Verlag Helvetica Chimica Acta AG, Zürich

In continuation of our previous studies on the development of new routes to heterocyclic systems (see [15] and refs. cit. therein), we now report an efficient and facile synthetic route to dialkyl 2-(alkylamino)-4,9-dihydro-9-oxocyclohepta[b]pyran-3,4-dicarboxylates **4** using α -tropolone (=2-hydroxycyclohepta-2,4,6-trienone; **3**), alkyl isocyanides **1**, and dialkyl acetylenedicarboxylates **2** without any catalyst (*Scheme 1*).

Scheme 1. Synthesis of Tropolone Derivatives **4** from Alkyl Isocyanide **1**, Dialkyl Acetylenedicarboxylate **2**, and Tropolone (**3**)

Results and Discussion. – The three-component reaction of alkyl isocyanide 1, dialkyl acetylenedicarboxylate 2, and 3 proceeded in CH_2Cl_2 at ambient temperature and was completed after 24 h to afford dialkyl 2-(alkylamino)-4,9-dihydro-9-oxocy-clohepta[*b*]pyran-3,4-dicarboxylates 4 in yields of 65–86% (*Scheme 1*).

The structures of the products $4\mathbf{a}-4\mathbf{g}$ were deduced from their IR, ¹H- and ¹³C-NMR, and MS data. For example, the mass spectrum of $4\mathbf{a}$ displayed the molecularion peak at 373 *m/z*, which is consistent with a 1:1:1 adduct of $1\mathbf{a}$, $2\mathbf{a}$, and 3. The ¹H-NMR spectrum of $4\mathbf{a}$ exhibited a *multiplet* for the cyclohexyl substituent ($\delta(\mathbf{H})$ 1.16–2.07), two *singlets* for two MeO groups ($\delta(\mathbf{H})$ 3.63 and 3.68), a *multiplet* for (CH₂)₅CH–N ($\delta(\mathbf{H})$ 3.99), a *singlet* for H–C(4) ($\delta(\mathbf{H})$ 4.55) and two *multiplets* for three H-atoms of the tropone ring ($\delta(\mathbf{H})$ 6.83–6.91 and $\delta(\mathbf{H})$ 7.12–7.20), and a *doublet* ($\delta(\mathbf{H})$ 7.06, ³*J* = 11.2), as well as a broad *singlet* for NH ($\delta(\mathbf{H})$ 8.26). The ¹H-decoupled ¹³C-NMR spectrum of $4\mathbf{a}$ showed 20 distinct resonances, partial assignments of these resonances is given in the *Exper. Part.* The ¹H- and ¹³C-NMR spectra of $4\mathbf{b}-4\mathbf{g}$ are similar to those of $4\mathbf{a}$, except for *N*-alkyl and esters moieties.

Although the mechanism of this reaction has not been established experimentally, a reasonable proposal is depicted in *Scheme 2*. On the basis of isocyanide chemistry [16], the zwitterionic intermediate **5** from reaction of alkyl isocyanide **1** and dialkyl acetylenedicarboxylate **2** is protonated by OH of **3**. Subsequent reaction of the nitrilium ion **6** with the deprotonated tropolone produces ketenimine **7**. This addition product may tautomerize and then cyclize, under the employed reaction conditions, to form tropolone derivatives **4**.

Scheme 2. Proposed Mechanism for the Formation of Tropolone Derivatives 4

Conclusions. – We have developed a new and efficient synthetic method for the preparation of dialkyl 2-(alkylamino)-4,9-dihydro-9-oxocyclohepta[b]pyran derivatives. The present method has the advantage that the reaction is performed under neutral conditions with easily available starting materials to give high yields.

Experimental Part

General. Starting materials and solvents were obtained from *Merck* (Germany) and *Fluka* (Switzerland), and were used without further purification. Column chromatography (CC): *Merck* silica-gel powder. M.p.: *Electrothermal 9100* apparatus; uncorrected. IR Spectra: *Shimadzu IR-460* spectrometer; in KBr. ¹H- and ¹³C-NMR spectra (CDCl₃ soln.): *BRUKER DRX-250 AVANCE* spectrometer at 250.0, and 62.9 MHz, resp. MS: *Agilent-Technologies-(HP)-5973* mass spectrometer operating at an ionization potential of 70 eV. Elemental analyses: *Heraeus CHN-O-Rapid* analyzer.

General Procedure for the Preparation of Compounds 4. To a magnetically stirred soln. of tropolone (3, 1 mmol) and dialkyl acetylenedicarboxylate 2 (1 mmol) in dry CH_2Cl_2 (5 ml) was added a soln. of alkyl isocyanide 1 (1 mmol) in dry CH_2Cl_2 (2 ml). The mixture was stirred for 24 h. The solvent was evaporated, and the residue was purified by CC using petroleum ether/AcOEt mixtures.

Dimethyl 2-(*Cyclohexylamino*)-4,9-*dihydro*-9-*oxocyclohepta*[b]*pyran*-3,4-*dicarboxylate* (**4a**). Yield 320 mg (86%). Brown semisolid. IR: 3292 (NH), 2924, 1744, 1684, 1620, 1441, 1269, 1084. ¹H-NMR: 1.16–2.07 (*m*, 5 CH₂ of cyclohexyl); 3.63 (*s*, MeO); 3.68 (*s*, MeO); 3.90–4.11 (*m*, N–CH); 4.55 (*s*, CH); 6.83–6.91 (*m*, 1 H of tropone); 7.06 (*d*, J = 11.2, 1 H of tropone); 7.12–7.20 (*m*, 2 H of tropone); 8.26 (br. *s*, NH). ¹³C-NMR: 24.40, 24.45, 25.47, 33.44, 33.62 (5 CH₂ of cyclohexyl); 45.52 (CH); 50.20 (CH–NH); 50.94, 52.73 (2 MeO); 70.22, 125.66, 130.34, 135.37, 135.97, 139.57, 154.67, 159.46 (C of alkene and tropone); 168.53, 172.32, 177.87 (3 C=O). EI-MS: 373 (2, M^+), 314 (100, $[M - CO_2Me]^+$), 232 (48, $[314 - C_6H_{10}]^+$), 200 (14, $[M + H - CO_2Me - C_6H_{10} - MeO]^+$), 172 (19, $[200 - CO]^+$), 157 (9, $[172 - NH_2]^+$). Anal. calc. for $C_{20}H_{23}NO_6$ (373.40): C 64.33, H 6.21, N 3.75; found: C 64.26, H 6.13, N 3.68.

Diethyl 2-(*Cyclohexylamino*)-4,9-dihydro-9-oxocyclohepta[b]pyran-3,4-dicarboxylate (**4b**). Yield 330 mg (83%). Brown semisolid. IR: 3281 (NH), 2932, 1737, 1682, 1616, 1440, 1229, 1086. ¹H-NMR: 1.15 (t, J = 7.0, Me); 1.22 (t, J = 7.2, Me); 1.23 – 2.10 (m, 5 CH₂ of cyclohexyl); 3.90 – 4.00 (m, N–CH); 3.99 – 4.20 (m, 2 CH₂O); 4.51 (s, CH); 6.80 – 6.92 (m, 1 H of tropone); 7.07 (d, J = 11.40, 1 H of tropone); 7.12 – 7.31 (m, 2 H of tropone); 8.25 (br. s, NH). ¹³C-NMR: 14.07, 14.56 (2 Me); 24.40, 24.42, 25.48, 33.45,

33.59 (5 CH₂ of cyclohexyl); 45.65 (CH); 50.11 (CH–NH); 59.36, 61.47 (2 CH₂O); 70.34, 125.59, 130.16, 135.38, 135.95, 139.48, 154.58, 159.22 (C of alkene and tropone); 168.23, 172.00, 177.93 (3 C=O). EI-MS: 401 (1, M^+), 328 (100, $[M - CO_2Et]^+$), 246 (46, $[328 - C_6H_{10}]^+$), 218 (12, $[246 - Et]^+$), 200 (12, $[246 - EtO]^+$), 172 (15, $[200 - CO]^+$), 157 (6, $[172 - NH_2]^+$). Anal. calc. for C₂₂H₂₇NO₆ (401.46): C 65.82, H 6.78, N 3.49; found: C 65.73, H 6.83, N 3.34.

Dimethyl 2-(tert-*Butylamino*)-4,9-*dihydro*-9-*oxocyclohepta*[b]*pyran*-3,4-*dicarboxylate* (4c). Yield 280 mg (81%). Yellow powder. M.p. 115–117°. IR: 3314 (NH), 2954, 1731, 1676, 1616, 1430, 1166, 1081. ¹H-NMR: 1.51 (*s*, *t*-Bu); 3.65, 3.69 (2*s*, 2 MeO); 4.56 (*s*, CH); 6.83–6.94 (*m*, 1 H of tropone); 7.07 (*d*, *J* = 11.5, 1 H of tropone); 7.11–7.21 (*m*, 2 H of tropone); 8.51 (br. *s*, NH). ¹³C-NMR: 29.95 (3 Me); 45.32 (CH); 51.01, 52.77 (2 MeO); 53.16 (C–NH); 70.70, 125.35, 130.35, 135.44, 135.91, 139.66, 154.67, 160.54 (C of alkene and tropone); 168.71, 172.38, 177.82 (3 C=O). EI-MS: 347 (2, *M*⁺), 288 (56, [*M* – CO₂Me]⁺), 232 (100, [288 – Me₂CCH₂]⁺), 200 (17, [232 – MeO]⁺), 172 (23, [200 – CO]⁺), 157 (9, [172 – NH₂]⁺). Anal. calc. for C₁₈H₂₁NO₆ (347.37): C 62.24, H 6.09, N 4.03; found: C 62.32, H 5.91, N 3.92.

Diethyl 2-(tert-*Butylamino*)-4,9-dihydro-9-oxocyclohepta[b]pyran-3,4-dicarboxylate (**4d**). Yield 300 mg (80%). Yellow powder. M.p. 118–120°. IR: 3260 (NH), 2979, 1733, 1673, 1613, 1433, 1185, 1087. ¹H-NMR: 1.160 (t, J = 7.0, Me); 1.22 (t, ${}^{3}J$ = 7.2, Me); 1.48 (s, t-Bu); 4.01–4.20 (m, 2 CH₂O); 4.51 (s, CH); 6.79–6.92 (m, 1 H of tropone); 7.06 (d, J = 11.6, 1 H of tropone); 7.11–7.18 (m, 2 H of tropone); 8.49 (br. s, NH). ¹³C-NMR: 14.06, 14.55 (2 Me); 29.93 (3 Me); 45.47 (CH); 53.01 (C–NH); 59.41, 61.47 (2 CH₂O); 70.82, 125.30, 130.17, 135.42, 135.88, 139.55, 154.59, 160.31 (C of alkene and tropone); 168.34, 172.04, 177.84 (3 C=O). EI-MS: 375 (1, M^+), 302 (59, M – CO₂Et]⁺), 246 (100, [302 – Me₂CCH₂]⁺), 218 (10, [246 – Et]⁺), 200 (12, [246 – EtO]⁺), 172 (17, [200 – CO]⁺), 157 (6, [172 – NH₂]⁺). Anal. calc. for C₂₀H₂₅NO₆ (375.42): C 63.99, H 6.71, N 3.73; found: C 64.12, H 6.83, N 3.61.

Dimethyl 4,9-Dihydro-9-oxo-2-[(1,1,3,3-tetramethylbutyl)amino]cyclohepta[b]pyran-3,4-dicarboxylate (4e). Yield 330 g (80%). Yellow powder. M.p. 156–158°. IR: 3380 (NH), 2947, 1727, 1669, 1604, 1436, 1161, 1079. ¹H-NMR: 0.99 (*s*, Me₃C); 1.56 (*s*, Me₂C); 1.95 (*AB*, *J* = 15.6, CH₂); 3.65, 3.70 (*s*, 2 MeO); 4.57 (*s*, CH); 6.83–6.95 (*m*, 1 H of tropone); 7.08 (*d*, *J* = 11.2, 1 H of tropone); 7.12–7.24 (*m*, 2 H of tropone); 8.57 (br. *s*, NH). ¹³C-NMR: 30.65, 30.98 (2 Me); 31.41 (*Me*₃C); 31.60 (C); 45.43 (CH); 50.97 (MeO); 52.20 (CH₂); 52.71 (MeO); 56.63 (C–NH); 70.38, 125.40, 130.33, 135.42, 135.87, 139.68, 154.59, 160.42 (C of alkene and tropone); 168.74, 172.43, 177.74 (3 C=O). EI-MS: 401 (1, [*M* – 2]⁺), 344 (9, [*M* – CO₂Me]⁺), 328 (100, [344 – Me]⁺), 246 (40, [344 – C₇H₁₄]⁺), 232 (31, [246 – Me]⁺), 200 (15, [232 – MeO]⁺), 172 (17, [200 – CO]⁺), 157 (8, [172 – NH₂]⁺). Anal. calc. for C₂₂H₂₉NO₆ (403.48): C 65.49, H 7.24, N 3.47; found: C 65.38, H 7.32, N 3.58.

Diethyl 4,9-Dihydro-9-oxo-2-[(1,1,3,3-tetramethylbutyl)amino]cyclohepta[b]pyran-3,4-dicarboxylate (4f). Yield 340 mg (79%). Yellow powder. M.p. 154–156°. IR: 3269 (NH), 2952, 1727, 1669, 1615, 1434, 1177, 1082. ¹H-NMR: 0.96 (*s*, Me₃C); 1.160 (*t*, *J* = 70, Me); 1.23 (*t*, *J* = 7.0, Me); 1.53 (*s*, Me₂C); 1.92 (*AB*, *J* = 14.2, CH₂); 4.01–4.17 (*m*, 2 CH₂O); 4.52 (*s*, CH); 6.80–6.92 (*m*, 1 H of tropone); 7.08 (*d*, *J* = 11.6, 1 H of tropone); 7.11–7.19 (*m*, 2 H of tropone); 8.58 (br. *s*, NH). ¹³C-NMR: 14.07, 14.55, 30.71, 30.96 (4 Me); 31.42 (*Me*₃C); 31.60 (C); 45.60 (CH); 52.11 (CH₂); 56.48 (C–NH); 59.35, 61.43 (2 CH₂O); 70.53, 125.30, 130.13, 135.41, 135.84, 139.57, 154.56, 160.13 (C of alkene and tropone); 168.41, 172.08, 177.77 (3 C=O). EI-MS: 431 (1, *M*⁺), 358 (29, [*M* – CO₂Et]⁺), 328 (4, [358 – 2 Me]⁺), 246 (100, [358 – CMe₂CH₂CMe₃]⁺), 218 (9, [246 – Et]⁺), 200 (15, [246 – EtO]⁺), 172 (19, [200 – CO]⁺), 157 (8, [172 – NH₂]⁺). Anal. calc. for C₂₄H₃₃NO₆ (431.53): C 66.80, H 7.71, N 3.24; found: C 66.92, H 7.64, N 3.31.

Di(tert-*butyl*) 2-(*Cyclohexylamino*)-4,9-*dihydro*-9-*oxocyclohepta*[b]*pyran*-3,4-*dicarboxylate* (4g). Yield 300 mg (65%). Yellow semisolid. IR: 3305 (NH), 2931, 1729, 1674, 1619, 1443, 1156, 1086. ¹H-NMR: 1.10–2.15 (*m*, 5 CH₂ of cyclohexyl); 1.38 (*s*, Me₃C); 1.48 (*s*, Me₃C); 3.87–4.04 (*m*, H–C–N); 4.35 (*s*, CH); 6.81–6.92 (*m*, 1 H of tropone); 7.12 (*d*, J = 11.3, 1 H of tropone); 7.13–7.25 (*m*, 2 H of tropone); 8.18 (br. *s*, NH). ¹³C-NMR: 24.73, 25.56 (2 CH₂ of cyclohexyl); 27.89 (*Me*₃C); 27.99 (CH₂); 28.59 (Me₃C); 32.74, 33.77 (2 CH₂ of cyclohexyl); 47.23 (CH); 50.26 (CH–NH); 77.22, 79.31, 81.46 (2 C and C of alkene); 126.07, 129.68, 135.72, 135.85, 139.41, 154.18, 158.86 (C of alkene and tropone); 168.21, 171.35, 178.11 (3 C=O). EI-MS: 457 (1, *M*⁺), 356 (29, [*M* – CO₂*t*-Bu]⁺), 300 (100, [356 – *t*-Bu]⁺), 218 (33, [300 – C₆H₁₀]⁺), 57 (17, [*t*-Bu]⁺). Anal. calc. for C₂₆H₃₅NO₆ (457.57): C 68.25, H 7.71, N 3.06; found: C 68.37, H 7.62, N 3.11.

Helvetica Chimica Acta - Vol. 94 (2011)

REFERENCES

- [1] G. Fischer, Adv. Heterocycl. Chem. 1995, 64, 81; P. L. Pauson, Chem. Rev. 1955, 55, 9.
- [2] T. Nozoe, K. Doi, K. Kitahara, Chem. Pharm. Bull. 1956, 32, 480.
- [3] M. Cueto, J. B. MacMillan, P. R. Jensen, W. Fenical, Phytochemistry 2006, 67, 1826.
- [4] R. F. Angawi, D. C. Swenson, J. B. Gloer, D. T. Wicklow, Tetrahedron Lett. 2003, 44, 7593.
- [5] A. Bargagna, M. Longobardi, E. Mariani, P. Schenone, F. Rossi, M. D'Amico, C. Falzarano, *Farmaco* **1992**, *47*, 345.
- [6] D. Kaminsky, US Patent 3,879,426, 1975.
- [7] K. R. Romines, J. K. Morris, W. J. Howe, P. K. Tomich, M.-M. Horng, K.-T. Chong, R. R. Hinshaw, D. J. Anderson, J. W. Strohbach, S. R. Turner, S. A. Mizsak, J. Med. Chem. 1996, 39, 4125.
- [8] J. P. David, A. J. de O. Santos, M. L. da S. Guedes, J. M. David, H.-B. Chai, J. M. Pezzuto, C. K. Angerhofer, G. A. Cordell, *Pharm. Biol.* 1999, 37, 165.
- [9] K. Imafuku, K. Yamaguchi, Bull. Chem. Soc. Jpn. 1981, 54, 2855.
- [10] M. Honda, K. Imafuku, Bull. Chem. Soc. Jpn. 1985, 58, 508.
- [11] D. L. Wang, Z. T. Jin, B. Z. Yin, K. Imafuku, J. Heterocycl. Chem. 1990, 27, 891.
- [12] W. T. Gao, S. F. Zhang, J. Z. Yang, Chin. Chem. Lett. 1999, 10, 1.
- [13] Y. Li, M. Chang, M. Sun, W. Li, W. Gao, Chin. J. Chem. 2009, 27, 2073.
- [14] A. Bargagna, M. Longobardi, E. Mariani, P. Schenone, M. L. Cenicola, C. Losasso, M. Carnevale, E. Marmo, *Farmaco* 1991, 46, 461.
- [15] A. Ramazani, A. T. Mahyari, M. Rouhani, A. Rezaei, Tetrahedron Lett. 2009, 50, 5625.
- [16] A. Dömling, I. Ugi, Angew. Chem., Int. Ed. 2000, 39, 3168; V. Nair, A. U. Viond, J. S. Nair, A. R. Sreekanth, N. P. Rath, Tetrahedron Lett. 2000, 41, 6675.

Received June 4, 2010